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Abstract

We study the semi-inclusive hadron production in deep inelastic scattering at small-x. A trans-

verse momentum dependent factorization is found consistent with the results calculated in the

color-dipole framework in the appropriate kinematic region. The transverse momentum dependent

quark distribution can be studied in this process as a probe for the small-x saturation physics.

Especially, the ratio of the quark distributions as functions of transverse momentum at different x

demonstrates strong dependence on the saturation scale. The Q2 dependence of the same ratio is

also studied by applying the Collins-Soper-Sterman resummation method.
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There have been compelling theoretical arguments and experimental evidence that the

saturation physics [1, 2] plays a very important role in high energy hadronic scattering

process, and an effective theory called color-glass-condensate emerges to describe the relevant

physics [3, 4]. In particular, the parton distributions at small-x (x is the longitudinal

momentum fraction of the hadron carried by the parton) and/or of large nucleus can be

calculated from this effective theory, and they all demonstrate a saturation behavior. The

rapidity (Y = ln 1/x) evolution of these distributions are controlled by a nonlinear JIMWLK

quation [5–7], which has been thoroughly studied in the last decade. By employing the

saturation physics, the deep inelastic scattering (DIS) structure function measured by the

HERA experiments can be very well described [8–10], as well as the diffractive structure

functions [11–14] and vector-meson production [15–17]. Forward hadron suppression in dA

collisions at RHIC experiments also indicates the importance of the saturation physics in

the small-x region [18–21]. All these successes have encouraged rapid developments in the

small-x physics in the last few years [22].

One of the key predictions of this effective theory is the transverse momentum dependence

of the parton distributions in big nucleus at small-x, especially the gluon distribution [3, 23,

24]. In the inclusive DIS process, the gluon distribution is convoluted into a dipole cross

section, which only provides indirect probe. In this paper, we argue that the transverse

momentum dependent parton distributions can be directly probed in the semi-inclusive

processes, for example, in the semi-inclusive hadron production in DIS process (SIDIS) [25].

In this process, there are separate momentum scales: Q2 the momentum transfer square for

the virtual photon and transverse momentum p⊥ for the final observed hadron. Because

of the additional hard momentum scale Q2, the final state hadron transverse momentum

can be directly related to that of the parton distribution in nucleon/nucleus when Q2 is

much larger than p2
⊥. The relevant QCD factorization theorem [26–28] has been rigorously

studied for the leading power contribution to the differential cross section. In the following

calculations, we will extend this factorization argument to the case that involves saturation

physics, and we argue that the transverse momentum dependent factorization formula is

still valid in the so-called geometric scaling regime [29–32], when Q2 is much larger than

the saturation scale Q2
s, but saturation effects are still important. As an example, we will

demonstrate this factorization for the semi-inclusive DIS at small-x.
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FIG. 1: Semi-inclusive DIS at small-x, where the cross represents the quark fragmenting into

final state hadron. The quark carries momentum fraction ξ̂ of the virtual photon and transverse

momentum k⊥.

In the semi-inclusive DIS process,

e + p(A) → e′ + h + X , (1)

we observe the final state hadron with characteristic kinematic variables, such as the longitu-

dinal momentum fraction zh of the virtual photon and transverse momentum p⊥. The usual

DIS kinematics variables are defined as Q2 = −q.q, xB = Q2/2PA · q, y = q · PA/ℓ · PA, and

zh = Ph ·PA/q ·PA, where Ph, ℓ, PA and q are momenta for the final state hadron, incoming

lepton and nucleon (nucleus), and the exchanged virtual photon, respectively. The trans-

verse momentum p⊥ is usually defined in the center of mass frame of the virtual photon and

the incoming hadron. In Fig. 1, we plot the schematic diagram for this process in the dipole

framework at small-x [24], where the virtual photon splits into a quark-antiquark dipole, and

scatters off the nucleon/nucleus target before the quark (antiquark) fragments into a final

state hadron. In the current fragmentation region (forward direction of the virtual photon)

the quark-fragmentation contribution will dominate the cross section.

The differential cross section for the above process can be calculated in the dipole for-

malism [24] or in the classical Yang-Mills effective theory approach [23], and we readily

have,

dσ(ep → e′hX)

dP
=

α2
emNc

2π3xBQ2

∑

f

e2
f

∫

zh

dz

z

D(z)

z2

∫

d2bd2q⊥F (q⊥, xB) ×H(ξ̂, k⊥) , (2)

where D(z) is the quark fragmentation function into the final state hadron, F (q⊥, xB) the

un-integrated gluon distribution defined below, ξ̂ = zh/z, and the fragmenting quark’s trans-

verse momentum k⊥ = p⊥/z. The phase space factor dP is defined as dP = dxBdQ2dzhdp2
⊥,
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and H reads as

H(ξ̂, k⊥) =

(

1 − y +
y2

2

)

(ξ̂2 + (1 − ξ̂)2)

∣

∣

∣

∣

∣

k⊥

k2
⊥ + ǫ2

f

−
k⊥ − q⊥

(k⊥ − q⊥)2 + ǫ2
f

∣

∣

∣

∣

∣

2

+(1 − y)4ξ̂(1 − ξ̂)Q2

(

1

k2
⊥ + ǫ2

f

−
1

(k⊥ − q⊥)2 + ǫ2
f

)2

, (3)

where ǫ2
f = ξ̂(1− ξ̂)Q2. We have also taken the massless limit in the above formula for sim-

plicity, and the first term is the contribution from transversely polarized photons and second

one corresponds to longitudinally polarized photons. The unintegrated gluon distribution is

defined through the Fourier transform from the dipole-nucleon cross section,

F (q⊥, x) =

∫

d2r

(2π)2
e−iq⊥·r (1 − Tqq̄(r, x)) , (4)

where Tqq̄ is the scattering amplitude, and is characterized by the saturation scale Q2
s which

depends on x. This unintegrated gluon distribution contains the saturation physics, which

diagrammatically represents the multiple scattering of the quark-antiquark dipole on nu-

cleon/nucleus target. When integrating over transverse momentum p⊥ and the fragmen-

tation function using
∫

dzD(z) = 1, the above formula will reproduce the total DIS cross

section in ep(A) → eX 1.

In this paper, we are interested in the factorization property of the above differential

cross section in the kinematic region where Q2 is much larger than the final state hadron

transverse momentum p2
⊥. In the current fragmentation region, zh is in order of 1. Therefore

the quark transverse momentum k⊥ is the same order of p⊥. Furthermore, we assume that

Q2 is also much larger than the saturation scale Q2
s where the transverse momentum q⊥

of the unintegrated gluon distribution sets. Under these limits, we will be able to study

the transverse momentum dependent factorization, where we can separate the transverse

momentum dependence of the final state hadron into the incoming quark distribution and

fragmentation function and/or soft factor [26, 28]. An important advantage to utilize the

above limits is that we can apply the power counting to analyze the leading power contri-

bution, and neglect the higher order corrections in terms of p2
⊥/Q2 where p⊥ stands for the

typical transverse momentum (p⊥ ∼ k⊥ ∼ q⊥).

1 In the kt-factorization at small-x, the gluon momentum fraction x differs from xB because of the kinematic

constraints [33]. In the leading logarithmic (ln 1/x) approximation, these two are consistent.
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More over, we notice that the integral of Eq. (2) is dominated by the end point contri-

bution of ξ̂ ∼ 1 where ǫ2
f is in order of k2

⊥ [24]. In order to extract the leading power term

from this equation, we can introduce a delta function in Eq. (2):
∫

dξδ(ξ − 1/(1 + Λ2/ǫ2
f ))

2, where Λ2 = (1− ξ̂)k2
⊥ + ξ̂(k⊥ − q⊥)2, and integrate out ξ̂ first. This delta function can be

further expanded in the limit of p2
⊥ ≪ Q2,

δ(ξ −
1

1 + Λ2

ǫ2
f

) =
1 − ξ̂

ξ
δ

(

(1 − ξ)(1 − ξ̂) −
Λ2

Q2

)

→
1 − ξ̂

ξ

(

δ(1 − ξ̂)

(1 − ξ)
+

δ(1 − ξ)

(1 − ξ̂)

)

, (5)

where a logarithmic term in the above expansion is power suppressed and has been neglected.

The contribution from the second term is also power suppressed. To see this more clearly, we

can substitute ǫ2
f = ξΛ2/(1− ξ) into Eq. (3), and the hard coefficient H will have an overall

factor (1 − ξ)2. Combining this with the delta function expansion, we will find that the

second term is the above expansion is power suppressed relative to the first one. Applying

the delta function expansion in Eqs. (2) and (3), we will obtain the leading contribution to

the differential cross section in the limit of p⊥ ≪ Q,

dσ(ep → e′hX)

dP
|p⊥≪Q =

α2
emNc

2π3Q4

∑

f

e2
f

(

1 − y +
y2

2

)

D(zh)

z2
h

∫

dξ

xB

×

∫

d2bd2q⊥F (q⊥, xB)A(q⊥, k⊥) , (6)

where

A(q⊥, k⊥) =

∣

∣

∣

∣

k⊥|k⊥ − q⊥|

(1 − ξ)k2
⊥ + ξ(k⊥ − q⊥)2

−
k⊥ − q⊥
|k⊥ − q⊥|

∣

∣

∣

∣

2

. (7)

We noticed that the longitudinal photon contribution is power suppressed and has been

dropped.

On the other hand, a transverse momentum dependent factorization can also be used

to describe the SIDIS process when the hard scale (Q2) is much larger than the trans-

verse momentum scale p2
⊥. To leading power of p2

⊥/Q2, for example, we will have following

factorization formula for the differential cross section for the semi-inclusive DIS [26–28],

dσ(ep → e′hX)

dP
=

4πα2
em

Q2

(

1 − y +
y2

2

)
∫

d2k⊥d2p1⊥d2λ⊥q(xB, k⊥; xBζ)D(zh, p1⊥; ζ̂/zh)

×S(λ⊥; ρ)H(Q2, xB, zh; ρ)δ(2)(zhk⊥ + p1⊥ + λ⊥ − p⊥) , (8)

2 If we replace the gluon momentum fraction xB by x = xB/ξ in Eq.(2), we will reproduce the kt-

factorization formula [33] with this delta function.
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(a) (b)

(c) (d)

FIG. 2: Transverse momentum dependent quark distribution calculated from small-x gluon splitting.

The double line represents the gauge link contribution from the TMD quark distribution definition.

where q(xB, k⊥), D(zh, p1⊥), S(λ⊥), and H are the transverse momentum dependent quark

distribution, fragmentation function, soft factor, and hard factor, respectively. We emphasize

that the above factorization is valid in the leading power of p2
⊥/Q2, and all power corrections

have been neglected. The energy dependent parameter ζ , ζ̂ and ρ have been introduced to

regulate the light-cone divergences in the associated functions. In a special frame, we can

simplify them as x2
Bζ2 = ζ̂2/z2

h = ρQ2 [28]. The transverse momentum resummation can be

performed by studying the evolution equation in terms of these variables.

The above factorization formalism was studied without considering the small-x resum-

mation effects [26–28]. Here, we assume that the factorization argument can still hold when

the hard momentum scale Q2 is much larger than the saturation scale Q2
s and we can use

the power counting method to study the leading contribution in this process. On the other

hand, if Q2
s is the same order as Q2 (or even larger), the power counting used to argue the

TMD factorization is no longer valid, and we will not have a TMD factorization. Simi-

lar studies for the heavy quark-antiquark production in pA (AA) collisions have also been

discussed in [36].

As an important check, in the following we will compare the prediction from the TMD

formula Eq. (8) to the dipole result Eq. (6) in the same kinematic region, Q2 ≫ p2
⊥(Q2

s). To
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do that, we need to calculate the TMD quark distribution in nucleon/nucleus at small-x.

This quark distribution is defined as [26]

q(x, k⊥) =
1

2

∫

d2ξ⊥dξ−

(2π)2
e−ixP+ξ−−ik⊥·ξ⊥〈P |Ψ̄(ξ)Lξγ

+L0Ψ(0)|P 〉 , (9)

where P is the momentum for the hadron, x and k⊥ are longitudinal momentum fraction

of the hadron and transverse momentum carried by the quark. In the above equation, L is

the gauge link introduced to guarantee the gauge invariance of the above definition [26, 28].

At this particular order, the gluon splitting contribution to the TMD quark distribution

can be calculated in the kt-factorization approach at small-x limit. We plot the relevant

Feynman diagrams in Fig. 2, where (b-d) diagrams come from the gauge link contributions.

These diagrams have to be taken into account because the gauge field connecting to the

hadron state (nucleon/nucleus) are dominated by the A+ component in the kt-factorization

calculations. Their contributions are important to obtain a consistent and gauge invariant

result. The derivation is straightforward, and we have,

q(x, k⊥) =
Nc

8π4

∫

dx′

x′2

∫

d2bd2q⊥F (q⊥, x′)A(q⊥, k⊥) , (10)

where A has been defined in Eq. (7). This is the quark distribution calculated in the

kt-factorization. In order to compare to the results we obtain above in the color-dipole

formalism, we need to extrapolate in the leading logarithmic approximation at small-x, i.e.,

replacing the unintegrated gluon distribution F (q⊥, x′) by F (q⊥, x) in the above equation.

Following this replacement, we will reproduce the differential cross section Eq. (6) calculated

in the dipole framework at the leading order of p2
⊥/Q2. Therefore, we have demonstrated

that the small-x calculation of the differential cross section for the SIDIS process is consistent

with the TMD factorization at this particular order. At even higher order, we will have to

take into account the contributions from the fragmentation function and soft factor. At this

order, they are trivial: D(zh, p1⊥) = D(zh)δ
(2)(p1⊥) and S(λ⊥) = δ(2)(λ⊥) where D(zh) is

the integrated fragmentation function. We further argue that the TMD factorization will

work at higher orders as well, because the power counting is valid when Q2 ≫ p2
⊥(Q2

s) as we

mentioned above.

In the leading logarithmic approximation at small-x, we can further integrate out ξ in

Eq. (10),

xq(x, k⊥) =
Nc

4π4

∫

d2bd2q⊥F (q⊥, x)

(

1 −
k⊥ · (k⊥ − q⊥)

k2
⊥ − (k⊥ − q⊥)2

ln
k2
⊥

(k⊥ − q⊥)2

)

, (11)
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which is consistent with the result calculated before [23]. A number of interesting features of

this quark distribution have been discussed in the literature [23, 24]. For example, at small

k⊥ limit, the quark distribution saturates: xq(x, k⊥)|k⊥→0 ∝ Nc/4π4; at the large k⊥ limit, it

has power behavior xq(x, k⊥)
∣

∣

k⊥≫Qs
∝ Q2

s/k
2
⊥. These two features will be manifested if we

employ the GBW model for the unintegrated gluon distribution from saturated dipole cross

section: F (q⊥, x) = e−q2
⊥

/Q2
s/πQ2

s, where Q2
s is parameterized as Q2

s = (x/x0)
λGeV 2 with

x0 = 3 · 10−4 and λ = 0.28 [8]. Note that while the large q⊥ behavior of the unintegrated

gluon distribution F (q⊥, x) is incorrect in the GBW model (it falls exponentially instead

of a power law), this bad feature does not translate to the TMD quark distribution: the

convolution with the splitting kernel in Eq. (7) insures the proper leading-twist behavior. In

Fig. 3 (left panel), we show the ratio of the TMD quark distribution xq(x, k⊥) relative to that

at x = 10−2 as a function of k⊥ for x = 10−4 and x = 10−3, respectively. From this figure,

we can clearly see that the ratio remains unchanged when k⊥ goes to 0, whereas the ratio is

proportional to the ratio of Q2
s at different x when k⊥ is large. This clearly demonstrates that

the transverse momentum dependence provides an important information on the saturation

physics. We have shown that these TMD quark distributions can be studied in semi-inclusive

DIS process.

Furthermore, the transverse momentum dependence is also sensitive to the QCD dynam-

ics in the small-x evolution. In the above example, we took the simple parameterization

from the GBW model [8]. This result shall be modified by the nonlinear evolution. For

example, at large q⊥, the un-integrated gluon distribution scales as (q2
⊥/Q2

s)
−λc where λc is

the anomalous dimension [18, 30, 34, 35]. In the DGLAP domain, we have λc = 1 whereas

in the BFKL domain it is λc = 0.5. By solving the BK equation, it was found that λc = 0.63

when the rapidity Y = ln 1/x goes to infinity [30]. With this modification, the ratio of the

TMD quark distribution at large k⊥ will approach (Q2
s)

λc instead of Q2
s.

Another important QCD dynamics effects is the transverse momentum resummation [27],

which will affect the Q2 dependence of the k⊥ spectrum. In the results we plotted in the left

panel of Fig. 3, this effect was not considered, which correspond to the low Q2 results, for

example, at Q2 = Q2
0 = 10GeV 2. This effect can be studied by applying the Collins-Soper-

Sterman resummation method [27]. There have been great applications of this method

to various high energy processes, in particular, in the semi-inclusive DIS at HERA [37]

where important effects have been observed. To demonstrate this effect in the transverse
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FIG. 3: The transverse momentum dependent quark distributions at small-x: (left) at x = 10−4

and 10−3 as ratios relative to that at x = 10−2 for fixed Q2 = Q2
0 = 10GeV 2 where the transverse

momentum resummation effect is not important; (right) at different Q2 relative to that at Q2 =

10GeV 2 for fixed x = 3 · 10−4 with Q2
s = 1GeV 2 in the GBW model.

momentum dependent quark distribution at small-x we calculated above, we take the double

leading logarithmic approximation (DLLA) to solve the evolution equation for the quark

distributions. Under this approximation, we can write down quark distribution at higher

Q2 in terms of that at lower Q2
0 [38, 39]3,

q(x, k⊥; Q2) =

∫

d2r

(2π)2
eik⊥·re−S(Q2,Q2

0
,r)

∫

d2k′
⊥e−ik′

⊥
·rq(x, k′

⊥; Q2
0) , (12)

where the Sudakov form factor at the DLLA is defined by

S(Q2, Q2
0, r) = ln

Q2

Q2
0

[

αsCF

4π
ln(Q2Q2

0r
4) + c0r

2

]

, (13)

where we have also included a non-perturbative form factor contribution c0r
2 ln Q2/Q2

0 [40].

This resummation effect will shift the transverse momentum distribution to higher end when

Q2 increases. As an example, in Fig. 3 (right panel) we show the typical changes for the quark

distributions at Q2 = 20, 50, 100GeV 2 as compared to the lower Q2
0 = 10GeV 2, with the

following parameters: fixed coupling αs = 0.3, and c0 = 0.1 for the non-perturbative input

for the form factor [37]. From this plot, we can see that indeed, the transverse momentum

distribution becomes harder when Q2 is larger.

3 Here, we approximate the energy dependent parameter ζ in the TMD quark distribution by Q assuming

they are in the same order [28].
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In conclusion, we have studied the semi-inclusive DIS processes at small-x, and found

that the quark distribution studied can be used as a probe for the saturation physics. Espe-

cially, the ratio of the quark distributions is crucially depending on the saturation scale. We

also studied the quark distribution at different Q2, and found that the resummation effects

shift the distribution to larger k⊥ with larger Q2. An ideal place to study this physics will

be an electron-ion collider in the near future [41], where large nucleus target will provide

an addition direction to study the saturation physics. Meanwhile, we notice that the ra-

tios plotted in Fig. 3 qualitatively agree with the experimental data from HERA [42]. Of

course, in order to compare to these data, we have to take into account the fragmentation

contributions to calculate the differential cross sections. We also notice that an extension

to a study on the gluon transverse momentum distributions [43] will have to consider both

small-x and transverse momentum resummations. The result from this paper shall provide

us confidence to carry out these important studies.
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